Differential levels of glutamate dehydrogenase 1 (GLUD1) in Balb/c and C57BL/6 mice and the effects of overexpression of the Glud1 gene on glutamate release in striatum
نویسندگان
چکیده
We have previously shown that overexpression of the Glud1 (glutamate dehydrogenase 1) gene in neurons of C57BL/6 mice results in increased depolarization-induced glutamate release that eventually leads to selective neuronal injury and cell loss by 12 months of age. However, it is known that isogenic lines of Tg (transgenic) mice produced through back-crossing with one strain may differ in their phenotypic characteristics from those produced using another inbred mouse strain. Therefore, we decided to introduce the Glud1 transgene into the Balb/c strain that has endogenously lower levels of GLUD1 (glutamate dehydrogenase 1) enzyme activity in the brain as compared with C57BL/6. Using an enzyme-based MEA (microelectrode array) that is selective for measuring glutamate in vivo, we measured depolarization-induced glutamate release. Within a discrete layer of the striatum, glutamate release was significantly increased in Balb/c Tg mice compared with wt (wild-type) littermates. Furthermore, Balb/c mice released approx. 50-60% of the amount of glutamate compared with C57BL/6 mice. This is similar to the lower levels of endogenous GLUD1 protein in Balb/c compared with C57BL/6 mice. The development of these Glud1-overexpressing mice may allow for the exploration of key molecular events produced by chronic exposure of neurons to moderate, transient increases in glutamate release, a process hypothesized to occur in neurodegenerative disorders.
منابع مشابه
Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability.
The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu ...
متن کاملDeletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission.
Glutamate dehydrogenase (GDH), encoded by GLUD1, participates in the breakdown and synthesis of glutamate, the main excitatory neurotransmitter. In the CNS, besides its primary signaling function, glutamate is also at the crossroad of metabolic and neurotransmitter pathways. Importance of brain GDH was questioned here by generation of CNS-specific GDH-null mice (CnsGlud1(-/-)); which were viabl...
متن کاملGlutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.
The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a nov...
متن کاملEvaluation of Glutamate Dehydrogenase Activity and Insulin Secretion in Mice Exposed to Dexamethasone
Background and Aims: Diabetes is one of the most important endocrine disrupters and is associated with various hormones, including those that can lead to diabetes. Glucocorticoid use may lead to insulin resistance. Dexamethasone is one of these glucocorticoid compounds. Glutamate dehydrogenase plays a key role in the production of glutamate in the secretion of insulin. Based on these hormonal i...
متن کاملDeletion of Glutamate Delta-1 Receptor in Mouse Leads to Enhanced Working Memory and Deficit in Fear Conditioning
Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins w...
متن کامل